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1. Introduction
Public interest in food quality and production has increased

in recent decades. This increase is related to changes in eating
habits, consumer behavior, and the industrialization of the

food supply chains. The demand for high quality and safety
in food production calls for high standards in quality and
process control, which in turn requires sensitive and rapid
analytical technologies: sampling methods, sensors, and data
analysis. In this context, fluorescence spectroscopy consti-
tutes an interesting sensor technology, since several function-
ally important fluorescent substances are inherent to food
systems including proteins, vitamins, secondary metabolites,
pigments, toxins, and flavoring compounds.

Fluorescence spectroscopy is widely used in biological
sciences due to its high sensitivity and specificity. The main
research and applications in the field are usually carried out
using specific fluorescence probes developed for selected
problems, and the data analysis is often linear regression
using a single wavelength. Typically, the feasibility of such
analyses requires as a prerequisite extraction, chromatogra-
phy, chemical labeling, or other sample separation steps prior
to the fluorescence measurement. An alternative approach,
which is the one covered by this review, is to measure the
intrinsic fluorescence (autofluorescence) of the intact biologi-
cal sample. Autofluorescence of intact biological samples is
normally influenced by numerous analytes, and hence, num-
erous overlapping spectra make up the recorded signals.
However, such an approach may increase the speed of analy-
sis considerably and facilitates nondestructive analyses. The
nondestructive mode of analysis is of fundamental scientific
importance, because it enhances the exploratory dimension
to the measurements, allowing for more complex relation-
ships such as the effects of the sample matrix to be assessed.1

Intact foods are usually complex physical and chemical
systems which in most cases include several intrinsic fluoro-
phores and other phenomena which influence the recorded
fluorescence signals. To handle the complex fluorescence
signals obtained when analyzing intact food systems, chemo-
metrics in the form of multivariate and multiway data
analysis can be applied. The multivariate approach has
proven beneficial in analysis of nonselective signals and
specifically with respect to handling of interferents and as a
diagnostic tool for detection of deviating samples (outliers).2

Scientifically significant is the possibility of uniquely de-
composing the complex signals from a series of 2D excita-
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tion-emission fluorescence landscapes into the pure con-
stituent signals using multiway chemometrics. We have
coined this approachmathematical chromatographydue to
the fact that the separation (chromatography) of the constitu-
ent signals is performed mathematically (in computro).3

In this review we aim to provide a comprehensive over-
view of scientific activity concerning multivariate autofluo-
rescence of intact food systems. The review is written with
a special view of the current paradigm shift in industrial
quality control by the introduction of process analytical
technology where fluorescence sensors may provide valuable

complementary (to near-infrared) fingerprinting information
of process streams and reactions. The focus will be on the
multivariate mathematical approaches that are required to
extract information from the complex signatures that are often
the result of measuring autofluorescence of intact food
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systems. After a brief introduction to the basic principles of
fluorescence spectroscopy with focus on the phenomena af-
fecting the intrinsic fluorescence of intact biological samples,
the most relevant chemometric tools used in the evaluation
of fluorescence data will be described. Subsequently, ex-
amples of current applications of autofluorescence measure-
ments in different fields of food analysis will be given.

2. Fluorescence Spectroscopy

2.1. Basic Principles
Fluorescence (the name originates from the fluorescent

mineral fluorspar) refers to cold light emission (lumines-
cence) by electron transfer in the singlet state when molecules
are excited by photons. The electromagnetic phenomenon
fluorescenceis a three-stage process that occurs in certain
molecules calledfluorophoresor fluorescent dyes.4 First, the
fluorophore is excited to an electronic singlet state by
absorption of an external photon (hνex). Second, the excited
state undergoes conformational changes and interacts with
the molecular environment in a number of different ways,
including vibrational relaxation, quenching, and energy
transfer. Third, a photon (hνex) is emitted at a longer wave-
length, while the fluorophore returns to its ground state. The
difference in energy or wavelength between the absorbed
and the emitted photon is called the Stokes shift. The
fluorescenceexcitationandemissionof light typically appears
within nanoseconds and is independent of temperature. A
similar, but slower luminescence phenomenon is phos-
phorescence in which the photon goes through an inter-
mediate excited triplet state where the afterglow lasts longer
than microseconds and which is temperature-dependent.
The molecular structure and environment is decisive for
whether a compound is fluorescent. Fluorescence is often
exhibited by organic compounds with rigid molecular
skeletons, usually polyaromatic hydrocarbons and hetero-
cycles. The less vibrational and motional freedom in the
molecule, the greater the possibility that the difference in
energy between the excited singlet state and the ground
electronic state is sufficiently large that deactivation by
fluorescence will occur.

Fluorescence is unique among spectroscopic techniques,
because it is inherently multidimensional. A fluorophore
needs a specific level of energy to be excited, and the
subsequent emission energy corresponds to the difference
between the excited and ground electronic singlet states. Each
electronic state has several associated vibrational levels,
which implies that excitation does not occur at only one
single wavelength, but rather over a distribution of wave-
lengths corresponding to several vibrational transitions. While
the deactivation of the excited state only occurs from the
vibrational ground level, emission also occurs at several
wavelengths as it may reach different vibrational levels in
the electronic ground state. The result is that all fluorophores
have independent and specific spectral excitation and emis-
sion profiles characterizing their unique fluorescent proper-
ties. These profiles can be measured as excitation and
emission spectra or as a complete excitation-emission matrix
(EEM), also known as fluorescence landscapes. The fluo-
rescence spectra and the landscape of the aromatic amino
acid tryptophan are depicted in Figure 1.

Besides the high specificity of fluorescence spectroscopy,
the Stokes shift is fundamental to the sensitivity of the
fluorescence measurements. The Stokes shift, which, in

contrast to absorption spectroscopy, allows for emission
photons to be detected against a low background, combined
with efficient detectors in the visual range makes fluores-
cence spectroscopy a very sensitive analytical method with
possibilities to measure down to parts per billion levels.

2.2. Fluorophores in Food
Food contains a wide range of naturally occurring fluo-

rescent compounds which are important for the nutritive,
compositional, and technological quality. A comprehensive
review of naturally occurring fluorescent compounds was
made by Wolfbeis in 1985.5 The review included several
food-relevant fluorescent compounds such as aromatic amino
acids, vitamins and cofactors, nucleic acids, porphyrins,
flavonoids, coumarins, alkaloids, and myco- and aflatoxins.
The archetypal application of fluorescence in analysis of food
is the detection of aflatoxins in figs.6 The aflatoxins are
strongly fluorescent and will by excitation at 360 nm exhibit
strong bright green-yellow fluorescence emission. This is the
reason some greengrocers have blue light in their display
shelves.

Recently, a Web-based food fluorescence library was made
available at www.models.kvl.dk (September 2005) with the
fluorescence characteristics of a variety of intact food
samples as well as a list of food-relevant single fluorophores.
In Table 1 and Figure 2 the fluorescence spectral properties
of these selected fluorophores are presented.

Figure 1. Fluorescence landscape (EEM) of 10-5 M tryptophan
in water. The excitation (vertical) and emission (horizontal) spectral
profiles are indicated with the surrounding curves.

Table 1. List of 11 Food-Relevant Fluorophores and Their
Fluorescent Propertiesa

fluorophore
excitation
λmax(nm)

emission
λmax(nm)

phenylalanine 258 284
tyrosine 276 302
tryptophan 280 357
vitamin A (retinol) 346 480
vitamin B2 (riboflavin) 270 (382, 448) 518
vitamin B6 (pyridoxin) 328 393
vitamin E (R-tocopherol) 298 326
NADH 344 465
ATP 292 388
chlorophylla 428 663
hematoporphyrin 396 614

a Data from the FoodFluor Database at www.models.kvl.dk.
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2.3. Factors Affecting Fluorescence

An overview of factors that can affect the fluorescence
emission signals is given in Figure 3. Several phenomena
related to the nature of the food sample as well as the
concentration and the local molecular environment of the
inherent fluorophores will influence the fluorescence signal
obtainable from biological samples. The effect of quenching,

the concentration, and the molecular environment of fluo-
rophores plus scatter phenomena will be briefly discussed
in the following.

2.3.1. Quenching
Fluorescence quenching refers to any process which

decreases the fluorescence intensity of a samplesa deactiva-
tion of the excited molecule by either intra- or intermolecular

Figure 2. Fluorescence landscape map indicating the spectral properties of the selected 11 food-relevant fluorophores listed in Table 1.
The presented contour plot makes up the sum of the normalized fluorescence landscapes of each of the 11 fluorophores.

Figure 3. Diagram with an overview of factors affecting the fluorescence signal from complex samples.
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interactions.4 Quenching is either static or dynamic. Static
quenching occurs when formation of the excited state is
inhibited due to a ground-state complex formation in which
the fluorophore forms nonfluorescent complexes with a
quencher molecule. Dynamic or collisional quenching refers
to the process when a quencher interferes with (deactivates)
the behavior of the excited state after its formation. The
excited molecule will be deactivated by contact with other
molecules or by intra- or intermolecular interactions. Higher
temperatures increase collisional quenching due to the
increased velocities of the molecules. Resonance energy
transfer can also be considered as a kind of dynamic
quenching. Resonance energy transfer occurs when the
emission spectrum of a fluorophore overlaps with the
absorption spectrum of an acceptor molecule. The energy
transfer does not involve emission of light, but rather a direct
interaction between the donor and acceptor molecule, leading
to a full or partial deactivation of the excited fluorophore
(donor).

2.3.2. Concentration

The intensity of fluorescence depends on the concentration,
the molar absorptivity, and the quantum yield of the
fluorophore. Under ideal conditions in solutions with optical
density below 0.05 AU,4 the fluorescence intensity is
approximately linearly proportional to the concentration of
the fluorophore, according to

whereI f is the fluorescence intensity,æf the quantum yield,
Io the intensity of the incident light,ε the molar absorptivity,
c the molar concentration of the fluorophore, andl the optical
depth (or path length of the cell) of the sample. The
fluorescence signals are ideally additive in mixtures; i.e., the
overall fluorescence signal of a given sample can be
expressed as the sum of the fluorescence contribution from
each of the inherent fluorophores. However, in complex
mixtures such as intact food samples, the fluorescence may
not be additive due to quenching phenomena and interactions
with the molecular environment of the fluorophore.

2.3.3. Molecular Environment

The polarity of the local environment of a fluorophore
influences the emission of especially polar fluorophores. In
more polar environments, fluorophores in the excited state
will relax to a lower vibrational energy state before emission,
resulting in emission at lower energies, i.e., longer wave-
lengths. Shifts in emission spectra of fluorophores can be
observed when comparing identical fluorophores in different
solvents or as residues in different macromolecules. Figure
4 illustrates such an example, comparing the emission spectra
of tryptophan from three different milk protein fractions. The
observed emission is shifted according to the position and
exposure (to the surroundings) of the tryptophan residues in
the proteins. Clearly, the emission peak of the least structured
protein, in this case casein, is shifted more toward longer
wavelengths, indicating the most exposed in the surrounding
polar environment (water).

Also pH and temperature strongly affect the fluorescence
signal. With dissociation or protonation caused by pH
changes, the rates of nonradiative processes competing with
fluorescence can be altered and thereby affect the quantum

yield of fluorescence emission. Temperature primarily affects
fluorescence through its impact on dynamic quenching.

2.3.4. Scatter
Scattering and reflection of the incident light has a

substantial effect on fluorescence measurements, with respect
to both the optical depth of the sampling and the obtained
fluorescence signal. The most important parts of the scattered
light can be divided into elastic Rayleigh scatter and inelastic
Raman scatter. For Rayleigh scatter, the wavelengths of the
scattered light are the same as those of the incident light,
and in principle this type of scatter should not interfere with
fluorescence emission, as these spectral areas can be
disregarded when analyzing the fluorescence landscape. This
is illustrated in Figure 1, where only emission wavelengths
higher than 10 nm above the excitation wavelength are
included. However, when working with instrumental setups
with large bandwidths, Rayleigh scatter can constitute a
significant interference to fluorescence emission from fluo-
rophores with small Stokes shifts. Raman scatter is related
to vibrational states of the bulk substances in the sample
and reflects a constant energy loss. Raman scatter can in
many cases be neglected because of its weak contribution
to the fluorescence signal. Alternatively, corrections of the
fluorescence signal can be performed either by subtracting
the pure solvent/background scatter contribution or by
specifically addressing the scatter in the modeling of the
fluorescence data.7,8

2.4 Practical Issues Related to Sampling of Intact
Food

In an ideal sample system for fluorescence measurements,
several conditions need to be fulfilled: (i) The concentration
range of the fluorophores must be at the appropriate level to
be approximately linearly related to the fluorescence inten-
sity. (ii) The fluorescence signals from each of the inherent
fluorophores must be independent of each other. (iii) The
signal contributions from interferents such as absorbing
species and quenching phenomena must be insignificant
compared to the fluorescence signal. Such conditionscan-
not be fulfilled in most intact food samples where the
concentration ranges of the inherent fluorophores are not
adjustable and several absorbing and quenching species

If ) 2.3æfIoεcl (1)

Figure 4. Normalized fluorescence emission spectra (excitation
wavelength 295 nm) of a solution of milk proteins in water:
R-lactalbumin,â-lactobglobulin, and casein. Concentrations cor-
respond to approximate tryptophan concentrations of 10-5 M.
Casein is from bovine milk and a mixture ofR-, â-, γ-, andκ-casein.
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concurrently exist. Instead the complex fluorescence pattern
from intact food systems can be approached pragmatically
and considered as a spectral fingerprint of the sample based
on its fluorescence characteristics as well as its absorbing
and quenching abilities.1 Using this approach, classifications
and indirect correlations to quality parameters can be
assessed.

For opaque intact food systems fluorescence will normally
be measured using front-face illumination and, for example,
a 60° or near-180° (optical probes) fluorescence collection
to avoid specular reflection. When measuring autofluores-
cence of opaque intact food systems, primarily the surface
is measured and most of the incident light will be absorbed
near the surface of the sample; i.e., a short optical depth is
obtained. This is essential for obtaining a linear relationship
between fluorescence intensity and analyte concentration,
according to eq 1. However, when measuring in front-face
mode, the amount of scattered and reflected light reaching
the detector will increase due to a higher level of reflection
from the surface of the sample. The most important thing to
bear in mind when measuring autofluorescence of opaque
intact food systems is that it is a surface measurement.
Whether the surface is viscous (honey), layered (fruits), or
fibrous (meat) does not really matter, as long as one remem-
bers that the measurement only represents the surface. It is
thus critical to investigate whether the sample surface is re-
presentative for the quality attribute that is desired measured.

The literature is scarce on the important sample-apparatus
interface in fluorescence spectroscopy for opaque anisotropic
samples. However, it is our experience that orientation of
heterogeneous and anisotropic food systems with respect to
the measurement geometry is normally negligible and that
instrumental uncertainty and sampling uncertainty can be
accounted for. There is no need a priori to consider
anisotropic (heterogeneous) systems difficult to sample.
Sampling uncertainty is a matter of representativity and
reproducibility, and it can be tested and validated using
multivariate principles (independent test set validation and
replicate analysis).

As mentioned in the Introduction, this review is written
with a view of the current paradigm shift in industrial quality
control by the introduction of process analytical technology.
In the full implementation of this approach, fluorescence
sensors need to measure directly on the process line or in
the batch process and sampling representativity will be only
dependent on the classical sampling issues such as the
required mass reduction of the dynamic process flow passing
the sensor optics. It is noteworthy that industrial on-line
fluorescence sensors are highly feasible, as the wavelengths
of the visual illumination and the fluorescence signals with
practically no loss can be transmitted over long distances
using quartz fibers, making several measuring points possible
using a single spectrometer. On-line measurements include
optical sensors in contact with the process streams or placed
inside batch reactors as well as diverted side streams passing
through the measurement apparatus. In the latter case, pro-
vided that sampling representativity is adequate, destructive
sample handling such as flow injection dilution is possible.

This would certainly be the case if the food system to be
measured is a transparent or semitransparent liquid, in which
case the most common way to record fluorescence is in 90°
geometry using a flow cell or a standard cuvette. Since the
concentration of fluorophores in transparent food systems
might not be at an optimal level, dilution of the food sample

(if possible) is an option. However, it should be kept in mind
that the dilution may change the concentration of other
relevant fluorescent species below or close to the detection
limit and that dilution may change interactions of the intact
food matrix. In Figure 5, the fluorescence landscape of a
beer sample at different dilution levels illustrates that

Figure 5. Fluorescence landscapes of a dilution series of beer
(Carlsberg lager) samples: undiluted (a), diluted 5 (b), 10 (c), and
50 (d) times (d). Fluorescence measurements were recorded in
quartz cuvettes with right-angle sampling geometry on a Perkin-
Elmer LS50B instrument with settings according to the FoodFluor
database at www.models.kvl.dk. Contour plots were normalized
according to the maximum intensity (white) of the undiluted sample.
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different fluorophores are expressed differently at different
dilution levels in a nontrivial fashion. For the undiluted beer,
fluorescence emission from excitation at 400-500 nm is
dominating, which is probably due to polyphenolic com-
pounds9 and riboflavin.10 Upon dilution with water, the
fluorescence pattern of the beer completely changes until it
is diluted 50 times, from which level the fluorescence pattern
stabilizes and depends linearly on the dilution. When the
sample is diluted 10 times, the distinct fluorescence from
tryptophan dominates.9 Such conditions are inherent to
fluorescence analysis and thus inevitable when working with
intact food samples.

3. Data Analysis

3.1. Fluorescence Data Structure
Fluorescence is inherently multidimensional, because the

fluorescence emission process contains a wealth of indepen-
dent information that is related to the fluorophore and its
surroundings. Multidimensional fluorescence signals recorded
from a sample can conveniently be presented as a matrix of
fluorescence intensities as a function of excitation and
emission wavelengths such as the fluorescence landscape
presented in the contour plot in Figure 1. The fluorescence
landscape or excitation-emission matrix of each fluorophore
can ideally be described as a function of a concentration-
dependent factor,R, and its excitation,b(λex), and emission,
c(λem), characteristics. Thus, the overall fluorescence EEM
can be described according to eq 2, wherei is used to

enumerate the fluorophores andn is the total number of
fluorescent species present in the sample. An important
assumption is that the excitation and emission spectra are
chemically independent of one another. Given several
samples with different concentrations of the fluorophores,
eq 2 can under ideal conditions be extended with an
additional dimension to become trilinear.

3.2. Chemometrics
Complex problems need multiple variables to be ad-

equately described. Spectroscopic data contain a large amount
of highly correlated data from neighboring wavelengths.
Multivariate data analytical tools such as principal compo-
nent analysis (PCA)11,12 and partial least squares (PLS)
regression13 have proven to be powerful methods for
mathematical extraction of the dominant latent data struc-
tures of such collinear spectroscopic data. The use of
multivariate techniques to explore and analyze the fluores-
cence signals from complex samples can be considered part
of the field of chemometrics, founded by Bruce Kowalski14

and Svante Wold15 in the early 1970s.16 Chemometrics has
been defined as the “chemical discipline that uses mathemat-
ics, statistics and formal logic (a) to design or select optimal
experimental procedures; (b) to provide maximum relevant
chemical information by analyzing chemical data; and (c)
to obtain knowledge about chemical systems”.16 Multivariate
so-called latent variable methods are intrinsically more
robust, for instance, toward peak shifts than univariate
methods, because such multivariate methods use areas under
whole curves (called scores in chemometrics) rather than just

a single wavelength intensity. Such areas are much less
influenced by moderate peak shifts than single wavelengths.
Additionally, robustness is also obtained from the general
noise reduction obtained from using the above-mentioned
areas.

3.3. Multivariate Analysis of Fluorescence Data
Multivariate data analysis of fluorescence data can be

approached in two different ways: (1) Analysis of fluores-
cence data arranged in data matrices. Typically, each row
in the data matrix holds the data for one sample and each
column corresponds to a specific excitation-emission wave-
length combination. (2) Multiway analysis of data with
variables in more than one dimension. Typically, every
sample is a matrix (EEM), and gathering several matrices
from several samples leads to a three-way box of data which
is called a three-way array.

Traditional multivariate analysis of fluorescence data is
usually performed on a series of either emission or excitation
spectra contained in a matrix. Sometimes even whole sets
of EEMs are rearranged into a matrix and analyzed with
multivariate analysis. The most common data analytical
approaches are PCA, used for exploring, visualizing, and
mining the data, and PLS regression, used for building
quantitative models, e.g., for predicting specific concentra-
tions from the measured spectra. The application of multi-
variate data analysis in the evaluation of fluorescence
spectroscopic data was first proposed in 1982 in a study
describing the botanical constituents of wheat in wheat
milling fractions.17 PLS regression was successfully used to
correlate emission spectra from intrinsic fluorescence of
wheat milling fractions to the concentration of different
botanical constituents in the flour, probably on the basis of
the fluorescence signal from ferulic acid, tryptophan, and
riboflavin.

3.4. Multiway Analysis of Fluorescence Data
Multiway data analysis refers to multivariate data analysis

performed on data arrays which are three-way or even higher
way as opposed to two-way data. In the case of fluorescence
spectroscopy, three-way data analysis can be applied, for
instance, when the fluorescence intensity as a function of
samples, excitation wavelengths, and emission wavelengths
is presented in a three-way data array. An example of a
multiway model for decomposition of a trilinear data array
is parallel factor analysis (PARAFAC).18,19 The principle
behind PARAFAC decomposition is to minimize the sum
of squares of the residual,eijk, as indicated in eq 3, based on

a least-squares algorithm. The elementxijk represents the data
for samplei in variablesj andk of the two different variable
dimensions. The three-way data array is thus decomposed
into a set of sample scores,aif, loadings for the emission
mode,bjf, and loadings for the excitation mode,ckf. The rank
of the PARAFAC model is given by the number of factors,
F, needed to describe the systematic variation in the data
array. A graphical presentation of the decomposition is shown
in Figure 6, where the three-way data arrayX is decomposed
into scores and loadings,a, b, andc, using two factors (or
PARAFAC components), leaving the unmodeled part ofX

EEM ) ∑
i)1

n

Ri × bi(λex) × ci(λem) (2)

xijk ) ∑
f)1

F

aifbjfckf + eijk (3)
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in the residual array,E, which ideally only contains
unsystematic noise.

The decomposition of three-way data gives a mathemati-
cally unique solution for a given number of components.
Thus, there are no mathematical ambiguities in the solution
except trivial scale and order issues. Therefore, if the
PARAFAC model is also a description of the chemically
meaningful structure, the parameters of the model will have
a chemical interpretation. Specifically, each PARAFAC
component will be an estimate of the contribution from one
fluorophore, and this estimate is given by a score vector
containing the relative concentrations, an emission loading
being an estimate of the emission spectrum and an excitation
loading being an estimate of the excitation spectrum. Thus,
the PARAFAC model can be used for a unique decomposi-
tion of the fluorescence data from a complex sample set into
a number of PARAFAC components corresponding to the
number of fluorophores present in the samples. The
PARAFAC analysis thereby facilitates the analysis of
fluorescence measurements of complex biological samples,
especially in exploratory situations when the fluorescence
phenomena of the samples a priori are unknown. In the data
analysis, the relative concentration of each of the present
fluorophores in the mixture can be determined, and the
excitation and emission loadings can be used for identifica-
tion of the fluorophores.

Several other algorithms have been suggested for decom-
position of trilinear data, as recently compared and reviewed
by Tomasi and Bro in 2006.20

The advantages of recording and analyzing fluorescence
landscapes in the investigation of a sample with multiple
fluorescent components was introduced by Weber in 196121

and further explored and developed by Warner and co-
workers at the University of Washington in the late 1970s.22-25

In a series of papers, they demonstrated the principles of
utilizing the experimental emission-excitation matrix in
quantitative analysis of multicomponent samples for deter-
mining the number and spectra of the emitting components
in the sample. Ho et al.26-28 and others from the same
research group29-31 continued this work and developed a so-
called rank annihilation factor analysis of fluorometric data
to obtain a decomposition similar to eq 3. In these first
studies, the multiway approach was only applied and

explored on simulated fluorescence data and fluorescence
measurements on model solutions. Later, multiway analysis
was applied on biological samples to resolve the fluorescent
components in spinach chloroplasts and green algae32 and
plant pigment complexes.33

An example of a PARAFAC decomposition of fluores-
cence data obtained from an intact food system is shown in
Figure 7, based on a series of fluorescence landscapes of
yogurt samples measured throughout a storage experiment.34

The obtained fluorescence signal is decomposed into three
factors, or PARAFAC components, that describe each of the
fluorescence phenomena present in the yogurt samples.
Scrutiny of the excitation and emission spectra of each of
the resolved components can then be used for identification
and understanding of the present fluorophores, which are
suggested to be riboflavin, tryptophan, and an oxidation
product. As the PARAFAC method is only well suited for
“ideal” problems, it is fairly common to observe that one
unidentified component could be a conglomerate or a
distributed class of substances of more complex nature. In
such cases, further identification can be pursued in more
traditional manners.

When working with intact food samples, the conditions
may not be ideal to obtain perfectly trilinear data with respect
to concentration levels and possible quenching effects, as
indicated by the fact that the obtained and resolved fluores-
cence signal from riboflavin (the first factor) in this case
only seems to have two excitation peaks (at around 370 and
450 nm). In pure solutions, strong absorption from riboflavin
will also appear at around 270 nm (cf. Table 1 and Figure
2), which is not evident in the yogurt study, probably due to
competition with the strong absorption of this light by
tryptophan.

4. Food Studies

As an introduction to autofluorescence from intact food
systems, a few examples of food fluorescence are shown in
Figure 8, where tentative chemical assignments can also be
made. For the milk sample, the observed dominating
fluorescence for excitation wavelengths below 300 nm can
be assigned to protein fluorescence, and the fluorescence
emission around 520 nm to riboflavin.35,36The fluorescence
signal with excitation/emission maxima around 325/425 nm
has previously been assigned to vitamin A.37 The remaining
peak around 360/440 nm corresponds in wavelengths to
previous literature assignments for dairy products of oxida-
tion products,34 a Maillard product,38 and NADH.39 Tryp-
tophan fluorescence also seems dominant for the wheat flour
sample, from which also a broad peak emission from 400 to

Figure 7. PARAFAC decomposition of fluorescence landscapes from yogurt samples into three factors. Curves in the vertical direction
depict the loading vector for each of the factors; curves in the horizontal direction show the emission loading profiles. The three contour
plots express the product of the excitation and emission loadings; fluorescence is only measured below the dotted line. Data were taken
from ref 34.

Figure 6. Principles of a PARAFAC decomposition of a three-
way data array,X, into two factors ofa, b, andc loading vectors.
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500 nm, upon excitation around 350 nm, is observed. This
is in agreement with a previous study40 on the autofluores-
cence of cereal flours. The autofluorescence of neat olive
oil expresses a completely different fluorescence pattern
dominated by fluorescence emission in the visible spectral
range. The most intense emission is observed just below 700
nm, corresponding to the fluorescent properties of chloro-
phyllic compounds according to Table 1.

Particularly in the past decade, the number of application
studies of autofluorescence and chemometrics in analysis of
intact food has increased. The following review of these
application studies will be divided into subgroups according
to the food products meat, fish, dairy products, edible oils,
cereals, sugar, and fruit and vegetables. The categories were
chosen to compare studies of similar products, and the
division was also based on the number of published studies
in each of the fields. Table 2 gives an overview of the studies
in each application area, including literature references
separated according to assigned fluorophores. Some of the
assignments are questionable and will be discussed in the
text.

4.1. Meat
Studies on applications of autofluorescence from meat

have primarily been focused on measurements of collagen
in connective and adipose tissues, but protein fluorescence
and suggestions for some fluorescent oxidation compounds
have also been reported.

Autofluorescence for analysis of meat was first proposed
in 1986 in a patent41 suggesting a method for quality control
of meat and fish products based on their intrinsic fluorescence
characteristics. The method was based on excitation at 340
nm and the fact that bone, cartilage, connective tissues, and
meat possess different fluorescent properties. Only weak
fluorescence signals are obtained for pure meat at this
excitation wavelength, whereas the nondesired substances
(fat, bone, cartilage, and connective tissue) all give a
considerable fluorescence emission signal. The emission
spectra for these compounds are different in shape, but they
all have a peak with a maximum at 390 nm and a shoulder
peak with emission at 455 nm (bone, cartilage, and connec-
tive tissue) or 475 nm (fat), which can probably be assigned
to different types of collagen and NADH.

Since 1987 Swatland has written a series of papers on
different aspects of the autofluorescence of meat.42 His work
was focused on measuring collagen and elastin fluorescence
from the connective tissues in meat using excitation at 365
nm. The obtained autofluorescence signals of various meat
samples were correlated to several sensory-related quality
parameters such as gristle content in beef,43 skin content and
processing characteristics of poultry meat slurry44 and turkey
meat,45,46and palatability,47 chewiness,48 and toughness49 of
beef. All these correlations can be considered as indirect
analyses due to the fact that these quality parameters are
related to the amount and distribution of connective and
adipose tissue in the meat. Swatland has also investigated
technical aspects of the fluorescence measurements and
instrumentation (backscatter, reflectance, direction of light),
leading to the development of on-line meat probes based on
fiber optics50-53 with simultaneous measurements of reflec-
tance.54 Most of these studies were carried out with a
univariate data analytical approach; univariate regression
models were calculated between the desired quality param-
eters and single wavelengths or extracted fluorescence peak
features. However, multiple linear regression of a few
parameters was applied using a stepwise selection proce-
dure,48,49 pointing toward a more multivariate approach.

Egelandsdal, Wold, and co-workers later applied the
bilinear methods PCA and PLS in evaluation of autofluo-
rescence emission spectra of meat obtained from selected
excitation wavelengths in the UV region between 300 and
400 nm. In their work, fluorescence emission spectra
assigned to various types of collagen in meat products were
found to correlate with tensile properties,55 tenderness,56 and
water-holding capacity,57 and recommended for quantifica-
tion of connective tissue and collagen.58,59 Fluorescence
emission spectra assigned to fluorescent oxidation products
have been found to correlate with lipid oxidation60,61 and
rancidity62 of meat. Moreover, tryptophan fluorescence
(excitation 290 nm) has been correlated to the texture of meat
emulsions and sausages63,64 and meat tenderness.65 Also
autofluorescence images reflecting the collagen fluorescence
have been used for quantification of the intramuscular fat
content and connective tissue in beef66,67 as well as for
mapping of the lipid oxidation in chicken meat.68 As an
example of a more peculiar meat application, the presence

Figure 8. Fluorescence landscapes of autofluorescence recorded
directly from intact food samples: (a) milk (1.5% fat), (b) wheat
flour, and (c) extravirgin olive oil taken from the FoodFluor
database at www.models.kvl.dk. Front-face fluorescence measure-
ments were recorded in quartz cuvettes with 60° sampling geometry
on a Perkin-Elmer LS50B instrument. Contour plots were normal-
ized according to the maximum intensity (white).
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Table 2. Overview of the Literature Survey on Autofluorescence Studies of Intact Food

fluorophore meat fish dairy products edible oils cereals beer sugar fruit and veg.

Dufour, 1997-200137,76

Birlouez-Aragon, 199838

Herbert, 1999-200077,86

Lopez, 200178

Skjervold, 200367 Mazerolles, 200179 Jensen, 198217 Apperson, 2002113 Norgaard, 1995125,126

amino acids Møller, 200370 Dufour, 200373 Leclere, 200193 Kissmeyer-Nielsen, 1985103 Sikorska, 200410 Munck, 19981
Allais, 2003-463,64 Christensen, 2003-534,95 Zandomeneghi, 199940 Christensen, 20059 Bro, 1999129

Becker, 200336 Jensen, 2004110 Baunsgaard, 2000-1127,131-133

Karoui, 2003-582,83,88-92 Ruoff, 2005128

Kulmyrzaev, 200539,80

Garimelle Purna, 200581

Jensen, 198641

Swatland, 1987-200342-54,134,135

collagen Egelandsdal, 1996-200555,56,59 Jensen, 198641

Wold, 199958,66 Andersen, 200372

Brøndum, 200057

Skjervold, 200367

Engelsen, 199796 Franck, 1969114

Kyriakid is, 200097 Schreiber, 1975115

Pedersen, 200274 Yamada, 1996116

chlorophyll Pedersen, 200274 Wold, 200575 Diaz, 200398 Song, 1997117

Guimet, 2004122,136 Cohen, 1998118

Sikorska, 2004-5100,101 Moshou, 2003121

Zandomeneghi, 200599 Bron, 2004119

Codrea, 2004120

Jensen, 198217

ferulic acid Kissmeyer-Nielsen, 1985103

Symons, 1991-6105-108

Ram, 2004109

Maillard products Birlouez-Aragon, 199838 Baunsgaard, 2000-1127,131-133

Léclere, 200193

NADH Jensen, 198641 Jensen, 198641 Kulmyrzaev, 200580 Sikorska, 200410

Brøndum, 200057 Dufour, 200373

Wold, 2000-260,62,68 Christensen, 2003-534,9 5 Engelsen, 199796 Jensen, 2004110

oxidation products Møller, 200370 Becker, 200336 Sikorska, 2004-5100,101

Olsen, 200561 Guimet, 2004122,136

polyphenols Sikorska, 2004-5100,101 Apperson, 2002113 Baunsgaard, 2000-1127,131-133

Zandomeneghi, 200599 Christensen, 20059 Ruoff, 2005128

pyridoxine (vitamin B 6) Sikorska, 200410

Dufour, 1997-200137,85

Herbert, 200086

retinol (vitamin A) Christensen95

Karoui, 2003-588-92

Kulmyrzaev, 200580

Wold, 200235

riboflavin (vitamin B 2) Christensen, 200534 Zandomeneghi, 200599 Zandomeneghi, 2003104 Sikorska, 200410

Becker, 200336 Jensen, 2004110

Mortensen, 200394

Kyriakidis, 200097

tocopherol (vitamin E) Guimet, 2004122,136

Sikorska, 2004-5100,101

Zandomeneghi, 200599

Takhar, 1995111

Tomlinson, 1995112

others (iso-r-acids) Apperson, 2002113

Sikorska, 200410

Christensen, 20059
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of autofluorescence of dietary phorphyrins has been sug-
gested for detection of fecal contamination in meat.69

All the described multivariate fluorescence studies of meat
used bilinear models to evaluate single-emission spectra. The
only multiway study of autofluorescence of meat reported
so far was on dry-cured Parma ham, which was monitored
throughout processing and aging.70 A PARAFAC decom-
position of the recorded fluorescence landscapes revealed
the presence of five fluorophores, of which tryptophan was
assigned to be the dominating one. The remaining four
components were more difficult to assign; one was suggested
to arise from the salting, and two others were related to
oxidation products. The PARAFAC component with excita-
tion/emission maxima at 370/470 nm accounted for the
second largest fluorescence contribution, and could perhaps
be assigned to collagen or NADH in agreement with previous
meat studies.

4.2. Fish
Already in 1985 fluorescence measurements were pro-

posed as a method for detecting bones in fish fillets.71

Autofluorescence of fish was later reported in the form of
collagen fluorescence found in cod and salmon using an
excitation wavelength of 332 nm.72 Fluorescence images
from this study revealed a significant inner filter effect in
the salmon flesh probably caused by strong absorption of
the emitted fluorescence light by red pigments such as
astaxanthin. Front-face fluorescence has also been suggested
for assessment of the freshness of fish.73 Normalized
fluorescence emission spectra using excitation wavelengths
of 260 nm (assigned to aromatic amino acids) and 336 nm
(assigned to NADH) were evaluated by PCA and suggested
to be used for discrimination between different storage times
for whiting and mackerel fillets.

PARAFAC has been applied to fluorescence landscapes
of fish oil.74 The PARAFAC decomposition revealed four
fluorophores present in the oil samples, of which one was
assigned to chlorophyll. The obtained complex fluorescence
fingerprints of the fish oils were shown to correlate (indi-
rectly) to the dioxin content in the fish oil, and the method
was suggested as a screening method for dioxin contamina-
tion.

4.3. Dairy Products
Fluorescence studies of dairy products reported in the

literature are dominated by fluorescence assigned to tryp-
tophan, vitamin A, and riboflavin, but fluorescent oxidation
and process-derived products have also been described.
Recently, chlorophyllic compounds were found in dairy
products using fluorescence emission spectra from 400 to
750 nm obtained by illumination with excitation light of 380
nm.75 Emission peaks between 600 and 700 nm were
observed and tentatively validated as chlorophylla and
hematoporphyrin.

In several studies of dairy products, fluorescence emission
spectra of tryptophan (normalized according to peak area)
have been investigated as an indicator of the protein structure
in dairy products. Minor shifts in the emission profile
evaluated with multivariate data analysis have been related
to different locations and the environment of the tryptophan
residues in the protein. Front-face fluorescence emission
spectra upon excitation at 290 nm were correlated to sensory
texture and used for discrimination of the cheese type.76 A

similar approach was applied to study molecular interactions
during milk coagulation.77,78 Several different coagulation
systems were studied, and the fluorescence approach includ-
ing multivariate evaluation allowed the investigation of the
network structure and molecular interactions. Within the area
of cheese ripening79,80 a similar approach was used for the
study of soft and semihard cheeses; the studies concluded
that fluorescence spectroscopy is suitable to provide relevant
information related to the cheese protein structure, which
was used to discriminate each ripening stage. In addition,
selected spectral characteristics of ripened cheeses linked to
the initial chemical composition and the initial protein
network structure were detected at the early stage of ripening.
Front-face fluorescence spectroscopy was also suggested as
a rapid method for screening of process cheese functional-
ity;81 in the presented study functionality was represented
by the meltability as measured by dynamic stress rheometry.
Application of classification methods on fluorescence spectra
recorded on Emmental cheeses82,83 from different European
geographic origins was shown to give correct classification
results for approximately 75% of the samples in the first
mentioned study and around 45% in the latter.

In a number of studies of dairy products, vitamin A
fluorescence has been recorded using excitation spectra with
emission at 410 nm. However, no chemical validation (i.e.,
pure substance measurements) of the assignment of the
fluorescence signal has been made. The emission wavelength
used seems rather low compared with the fluorescence profile
of pure solutions of vitamin A84 with an emission maximum
at 480 nm according to Table 1. Nevertheless, the assignment
is not questioned in the papers, and the fluorescence signal
has been related to phase transition of triglycerides in
cheese.85 While incorrect assignment of fluorescence may
not be crucial when seeking indirect correlations to quality
parameters such as rheological characteristics and classifica-
tions, it may prevent further interpretation of the chemical
system under investigation. A combination of the proposed
vitamin A fluorescence and tryptophan fluorescence has been
applied in several studies of cheese. The common fluores-
cence signal was found to correlate with the cheese type as
well as with the structure of soft cheese,86 the rheological
characteristics of various cheeses,80,87-89 and classification
of cheese and milk according to origin.90-92

Rapid fluorometric methods have been investigated for
estimation of the heat treatment of milk based on the intrinsic
fluorescence of milk. A combination of fluorescence assigned
to tryptophan (emission spectra using the excitation wave-
length at 295 nm) and vitamin A (excitation spectra recording
emission at 410 nm) was applied in a front-face fluorescence
study of milk.37 Classifications based on PCA of the fluor-
escence spectra clearly separated the milk samples according
to heating and homogenization. Another study used the
relation between the excitation/emission peaks at 290/340
and 350/440 nm, assigned to fluorescence from tryptophan
and advanced Maillard products, respectively, for a clas-
sification according to heat treatment based on measurements
of water-soluble milk fractions.38 The same method was
shown to correlate with lysine degradation in milk during
heating, although with an adjustment of the peak selection
to 330/420 nm for the proposed fluorescent Maillard
products.93 Front-face fluorescence emission has also been
used for monitoring intact milk samples using excitation
wavelengths of 250 and 360 nm assigned to fluorescence of
aromatic amino acids and NADH/FADH, respectively.39 The
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suggested NADH/FADH fluorescence was shown to cor-
relate with heat treatment indicators using principal compo-
nent regression models.

Riboflavin is considered to be a marker of photooxidation
in dairy products, and autofluorescence assigned to riboflavin
has been used to describe light-induced changes in dairy
products. Front-face fluorescence emission spectra have been
recorded from Jarlsberg cheese, sour cream, and cream
cheese upon excitation at 380 nm.35 The fluorescence spectra
revealed a significant reduction in fluorescence intensity at
525 nm and a corresponding increase around 415-490 nm
upon the expected light-induced oxidation of the samples.
The result was ascribed to photodegradation of riboflavin,
leading to a fluorescent product. Oxidation of Havarti cheese
has also been monitored on the basis of fluorescence
excitation/emission peaks at 370/530 and 430/530 nm,
ascribed to riboflavin.94 Autofluorescence in analysis of
yogurt confirmed the previous findings by relating storage
conditions to the fluorescence signal obtained for emission
around 530 nm.36 Furthermore, a high direct correlation to
riboflavin content (r2 ) 0.98) was found, verifying the
dependency.

Multiway studies of autofluorescence landscapes of dairy
products are so far described in two studies,34,95 where
PARAFAC was applied to evaluate the fluorescence land-
scapes of processed cheese and yogurt, respectively, as a
function of storage. In the study of cheeses, fluorescence
landscapes with excitation wavelengths from 240 to 360 nm
and emission wavelengths of 275-475 nm were recorded.
The fluorescence landscapes of the cheese samples were
decomposed into four different PARAFAC components
assigned to tryptophan, vitamin A, and a nonidentified
oxidation product. Two of the resolved PARAFAC compo-
nents yielded only slightly different excitation profiles, but
they both resembled the fluorescence properties of tryptophan
with very similar emission loadings with maxima at 347 and
339 nm. Both components were assigned to tryptophan,
representing two different populations of tryptophan residues.
In general, only the emission profile and not the excitation
maxima should be affected by different local environments
according to fluorescence theory. However, inner filter
effects, which can alter the observed excitation profile and
the poor resolution of the excitation wavelength in the study,
can justify the assignment. An alternative explanation could
be that it was tyrosine residues that were responsible for the
absorption in the PARAFAC component with the lowest
excitation maximum and that the energy was subsequently
transferred to tryptophan by resonance energy transfer.4 In
the latter case, the second PARAFAC component should
correctly have been assigned to tyrosine.

4.4. Edible Oils
Frying oil deterioration has been measured with fluores-

cence emission spectra using five selected excitation wave-
lengths from 395 to 530 nm and evaluated with multivariate
data analysis. The results showed high correlations with
quality parameters describing the deterioration.96 In another
study, fluorescence emission spectra from several common
vegetable oils were obtained upon illumination by 360 nm.97

The fluorescence signal was (partly) assigned to tocopherol
and chlorophyllic compounds, despite the fact that the
proposed tocopherol fluorescence emission at 525 nm
certainly does not match the fluorescence properties of pure
R-tocopherol.84

In olive oil, autofluorescence has been investigated for
determination of chlorophylls and pheophytins.98 Partial least-
squares regression models were applied on single-excitation,
single-emission, and synchronous spectra, which were shown
to be highly correlated to the content of the different pigments
(r2 > 0.99). Excitation spectra obtained for emission at 662
nm were found to be the optimal for the data at hand, which
makes sense compared to the fluorescence properties of
chlorophyll a listed in Table 1. Further exploration of the
autofluorescence of olive oils showed that the obtained
fluorescence signals could likely be assigned to tocopherol,
polyphenols, riboflavin, and chlorophyllic compounds. This
was concluded in a study also comparing front-face and right-
angle sampling geometry.99 It was suggested that fluores-
cence spectra obtained with the traditional setup (right-angle
fluorescence) contain considerable artifacts and deformations
due to self-absorption phenomena, even if the spectra are
corrected for inner filter effects, while front-face fluorescence
spectra were much less affected by self-absorption.

Recently, studies have been published characterizing
complete autofluorescence landscapes with excitation wave-
lengths of 250-450 nm and emission recorded up to 700
nm of a wide range of edible oils. Fluorescence from various
diluted and undiluted oils was investigated, and the obtained
signals were assigned to tocopherol and pigments of the
chlorophyll group.100 Furthermore, fluorescence signals were
suggested to originate from polyphenols, and fluorescence
appearing with excitation around 350 nm and emission
between 400 and 500 nm was shown to arise from thermal
oxidation. Inner filter effects were clearly evident in the
undiluted oils, as seen by the fact that the tocopherol was
hardly detectable in the neat oils as opposed to the diluted
oils, whereas the fluorescence signals from the polyphenolic
and thermally induced compounds were considerably di-
minished upon dilution. Similar fluorescence landscapes have
also been used for classification of edible oils.101 The
landscape approach was compared to synchronous scanning
fluorescence spectroscopy to characterize and differentiate
edible oils, including soybean, sunflower, rapeseed, peanut,
olive, grape seed, linseed, and corn oils. Both methods
provided good discrimination between the oil classes with a
low classification error based on the nonparametricalk
nearest-neighbors method and linear discriminant analysis.

Guimet et al. in 2004102 applied PARAFAC to evaluate
complete fluorescence landscapes of olive oils. The decom-
position of the olive oil fluorescence revealed the presence
of four different fluorophores, of which the major one was
assigned to chlorophyll. Two of the derived fluorophores
were assumed to be oxidation products with excitation
maxima around 350 nm in agreement with previous findings
and verified by the fact that they were practically absent in
the virgin olive oils, as opposed to the refined oils. The last
PARAFAC component in the study with an excitation/
emission maximum around 350/525 nm was erroneously
assigned to tocopherol with reference to the earlier study of
olive oils.97 However, as previously mentioned, this com-
ponent does not agree with the fluorescence characteristics
of tocopherol found in the literature.84

4.5. Cereals
Since the early 1980s fluorescence spectroscopy in com-

bination with PLS regression was used for prediction and
classification of botanical tissue components of complex
wheat flour17 and rye flour103 samples. The classification
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was based on excitation at 275, 350, and 450 nm, yielding
fluorescence emission maxima at 335, 420, and 520 nm,
respectively. The fluorescence was assigned to aromatic
amino acids (excitation 275 nm) and ferulic acid (excita-
tion 350 nm). The fluorescence peak at 450/520 nm was
not originally assigned, but probably originates from ribo-
flavin, as later verified in a study of wheat flour fluorescence,
where a standard addition technique was used for validation
of this assignment.104 The ferulic acid and riboflavin
fluorescence was later applied in several studies monitoring
wheat flour refinement and milling efficiency using fluo-
rescence imaging,105-108 and autofluorescence was recently
suggested for classification of wheat cultivars.109 Zandome-
neghi in 199940 investigated the intrinsic fluorescence of
cereal flour more thoroughly and optimized the conditions
for recording front-face fluorescence from intact samples.
He found three major fluorescence peaks present in the flour
samples similar to the ones previously described; one was
assigned to amino acids and another one to riboflavin.104 The
signals previously assigned to ferulic acid were not assigned
in this study, but suggested to originate from vitamin E or
B6. Fluorescence landscapes of oatmeal samples have also
been recorded in an attempt to monitor oxidative changes.110

The obtained fluorescence signals were comparable to the
findings in flour samples and assigned to tryptophan,
riboflavin, and an unidentified oxidation product. Is was also
shown that the fluorescence signals could be correlated to
the hexanal concentration in oatmeal and that during storage
time the signals decreased especially in the excitation
wavelength range around 450 nm.

4.6. Beer
In 1995 a patent suggested using autofluorescence as a

novel and rapid method for monitoring the bitterness in
beer,111 and the approach was pursued in a recent study.9

Bitterness in beer is primarily determined by the amount of
iso-R-acids, which originate from the hops. Fluorescence was
suggested for quantification of these (presumably) fluorescent
bitter acids, which normally appear in concentrations around
10-40 ppm in beer. An alternative approach toward bitter-
ness determination in beer using europium-induced delayed
fluorescence to detect the amount of iso-R-acids in beer
was later proposed by Tomlinson et al. in 1995.112 This
technique requires a sample preparation, namely, addition
of europium, to separate it from the background fluores-
cence through a gate time delay. The sample preparation step
makes the approach more cumbersome compared to mea-
suring autofluorescence of intact beer, yet the method is
much faster than the traditional bitterness determination of
beer that involves an extraction step. The topic is of
commercial interest, since the traditional method today is
carried out as a routine quality control analysis in all modern
breweries.

A more thorough description of the intrinsic fluorescence
in beer was reported by Apperson et al. in 2002,113 suggesting
that the complex fluorescence characteristics of beer arise
from amino acids, complex polyphenols, and iso-R-acids.
Similar fluorescence was observed in another study;9 how-
ever, the fluorescence contribution from the bitter acids did
not appear obvious upon inspection of the signals. In a recent
study of fluorescence landscapes of beer,10 classification of
eight individual beers was evaluated on the basis of their
intrinsic fluorescence characteristics. The classification was
performed by measuring each beer 12 times, and by the use

of the nonparametricalk nearest-neighbors method and linear
discriminant analysis, it was possible to discriminate between
the replicate measurements. The paper did not show if it was
possible to group different categories of beers, e.g., light,
dark, ale, and lager. The obtained fluorescence signals from
the beer were suggested to originate from aromatic amino
acids, NADH, riboflavin, and vitamin B6.

4.7. Fruit and Vegetables

For several decades chlorophyll fluorescence has been
considered an intrinsic probe for the photosynthesis in
plants.114,115 Thus, chlorophyll fluorescence has been sug-
gested as a tool for evaluating the heat tolerance of tropical
fruits,116 changes in apples during maturation, ripening, and
senescence,117 the quality of apple juice during processing,118

and the ripening of papaya fruit,119 among many others. The
mentioned studies all evaluate the fluorescence measurements
by the calculation of various fluorescence indices or ratios
and by univariate comparison of these to the quality
parameters. However, few studies have undertaken a mul-
tivariate approach in, for example, classification of apples
with fluorescence imaging120 and prediction of three levels
of mealiness in apples using fluorescence kinetics and
different mathematical classifiers.121 In the first of these
studies an apple classification method that employed a
hierarchy of two neural networks was developed. The system
reached 95% accuracy using a test material classified by an
expert for “bad” and “good” apples.

Chlorophyll, which gives rise to fluorescence found in
plants, can be considered of special interest as an indicator
substance due to the fact that the chlorophyll can be found
in food products during processing and in several steps
throughout the food chain, as seen from the presence of
chlorophyll found in fluorescence studies of dairy products75

and vegetables122 as well as fish oil.74

The autofluorescence of apple juice has also been explored,
on the basis of excitation at 265 and 315 nm.123 The obtained
fluorescence emission spectra were evaluated using the PCA
and PLS models to classify the juices according to variety
and to relate the measurements to the maturity of the apples.

4.8. Sugar

Several examples of the application of fluorescence and
chemometrics in the analysis of sugar have been published
within the past decade, and the application area has served
as a pioneering platform for applying multiway models to
autofluorescence landscapes.124 Fluorescence analyses of
sugar and sugar solutions are all based on measuring the
impurities in the sugar, since sucrose itself does not possess
the ability to fluoresce. The foundation for applying fluo-
rescence in the analysis of sugar was discovered many years
ago, as the purity of sugar samples already in the 1940s was
evaluated on the basis of an inspection of the fluorescence
arising upon illumination with ultraviolet light.125 This kind
of quality control was further investigated and approached
more scientifically in 1995 when the fluorescence of crystal-
line beet sugar and beet sugar juices was recorded and
evaluated with chemometrics.125,126The fluorescence emis-
sion spectra upon excitation of 230, 240, 290, and 330 nm
were concatenated and multivariate models used to explore
the data. The fluorescence signals dominated by the aromatic
amino acids were used for classification of the sugars
according to the production site and for prediction of several
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quality and process parameters. The findings were later
verified on sugar solutions1 and sugar crystals.127

Front-face fluorescence spectroscopy was also recently
proposed for authentication analysis of the botanical origin
of honey.128 Fluorescence emission spectra for excitations
at 250, 290, and 373 nm were in combination with excitation
spectra for emission at 450 nm recorded and evaluated using
PCA scores for a linear discriminant analysis classifying the
honeys according to floral origin.

More thorough investigations of impurities in various sugar
juices were carried out when multiway chemometrics was
applied in the evaluation of fluorescence landscapes of
sugar.1,129 PARAFAC revealed four fluorophores that were
responsible for the main fluorescence of beet sugar solutions.
Two of the components were assigned to tyrosine and
tryptophan originating from the beet, on the basis of their
derived fluorescent properties. PARAFAC was also applied
specifically on fluorescence landscapes of raw cane sugar130

and solid beet sugar.131 It was shown that classification
according to production site and correlation to important
sugar quality parameters such as color, ash, andR-amino N
was possible by measuring directly on the crystalline
samples. The results obtained were comparable to results
obtained on water-diluted samples. Further investigations of
the underlying fluorescence phenomena in various sugar and
sugar juice samples were carried out by comparing the
decomposed fluorescence components to a chromatographic
separation of sugar solutions.132,133 The fluorescence was
suggested to arise from colorant polymers formed in Maillard
reactions during the sugar processing and a polyphenolic
compound in addition to the more straightforward assign-
ments of tyrosine and tryptophan.

5. Conclusions and Perspectives
It is unquestionable that the intrinsic fluorescence from

intact food systems contains valuable information on the
quality and sensory properties of food products. Fluorophores
from raw food materials as well as process-induced fluo-
rescent substances have been shown to provide information
about the quality of food products, including food authentic-
ity and influence of processing. Our literature survey revealed
an increasing amount of research in the field within the past
decade facilitated by the widespread use of chemometrics.
The increasing research activities can hopefully address some
of the challenges of fluorescence measurements of intact food
samples and further explore the chemical systems and
causality, which in many cases are not fully understood, as
indicated by the tentative assignments of fluorophores in
several of the application studies.

The focus of this review was on multivariate applications
of fluorescence to food analysis. The new developments in
especially multiway multivariate data analysis combined with
the high sensitivity and the relatively unique 2D measurement
conditions of fluorescence spectroscopy makes a unique and
powerful combination with a tremendous unexploited po-
tential for on-line process control in the so-called process
analytical technology (PAT) concept. For this purpose
fluorescence sensors will be able to provide complementary
information about the raw materials and the processed food
compared to the information provided by the abundant near-
infrared (NIR) sensors, which are based on molecular
overtone vibrations and thus less sensitive and specific.

Fluorescence is ideally suited for on-line measurements,
because it is multidimensional, selective, and sensitive and

because industrial on-line fluorescence sensors are highly
feasible, as the wavelengths of the visual illumination and
the fluorescence signals with practically no loss can be
transmitted over long distances using quartz fibers, making
several measuring points possible using a single spectrometer.
Then why are there practically no on-line applications, except
a few examples in batch fermentors? There is no doubt that
the ongoing technological progress can deal with the chal-
lenges of standardization (the fluorescence signal is not
recorded relative to an incident light beam as in absorbance
spectroscopy) and configuration of future fluorescence sen-
sors. We believe that the main challenge for a more useful
implementation of multivariate autofluorescence in PAT is
related to its high sensitivity, i.e., that minute changes in
the raw materials can change the signals dramatically and
thus will require real-time or floating multivariate recalibra-
tion schemes.

Fluorescence has been known for over 300 years and is
still gaining momentum in biology, biotechnology, biochem-
istry, chemistry, and physics, but thus far it has not been
extensively used as an on-line sensor in the food industry.
With mathematical chromatographyin the form of multiway
analysis of fluorescence landscapes, the two-dimensional
nature of fluorescence data is utilized to improve the
selectivity of fluorescence analyses and to expand the
potential applications to complex chemical systems such as
food samples.
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